DataSheet.es    


PDF MAX5033 Data sheet ( Hoja de datos )

Número de pieza MAX5033
Descripción MAXPower Step-Down DC-DC Converter
Fabricantes Maxim Integrated 
Logotipo Maxim Integrated Logotipo



Hay una vista previa y un enlace de descarga de MAX5033 (archivo pdf) en la parte inferior de esta página.


Total 17 Páginas

No Preview Available ! MAX5033 Hoja de datos, Descripción, Manual

MAX5033
EVALUATION KIT AVAILABLE
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
General Description
The MAX5033 easy-to-use, high-efficiency, high-voltage,
step-down DC-DC converter operates from an input volt-
age up to 76V and consumes only 270μA quiescent cur-
rent at no load. This pulse-width modulated (PWM) con-
verter operates at a fixed 125kHz switching frequency at
heavy loads, and automatically switches to pulseskipping
mode to provide low quiescent current and high efficiency
at light loads. The MAX5033 includes internal frequency
compensation simplifying circuit implementation. The
device uses an internal low-onresistance, high-voltage,
DMOS transistor to obtain high efficiency and reduce
overall system cost. This device includes undervoltage
lockout, cycle-by-cycle current limit, hiccup-mode output
short-circuit protection, and thermal shutdown.
The MAX5033 delivers up to 500mA output current. The
output current may be limited by the maximum power
dissipation capability of the package. External shutdown
is included, featuring 10μA (typ) shutdown current. The
MAX5033A/B/C versions have fixed output voltages of
3.3V, 5V, and 12V, respectively, while the MAX5033D fea-
tures an adjustable output voltage, from 1.25V to 13.2V.
The MAX5033 is available in space-saving 8-pin SO and
8-pin plastic DIP packages and operates over the auto-
motive (-40°C to +125°C) temperature range.
Applications
● Consumer Electronics
● Industrial
● Distributed Power
Typical Application Circuit
VIN
7.5V TO 76V
47µF
R1
ON
R2
OFF
VIN BST
MAX5033
LX
ON/OFF
SGND
FB
VD
GND
0.1µF
220µH
D1
50SQ100
0.1µF
VOUT
5V, 0.5A
33µF
Features
● Wide 7.5V to 76V Input Voltage Range
● Fixed (3.3V, 5V, 12V) and Adjustable (1.25V to
13.2V) Voltage Versions
● 500mA Output Current
● Efficiency Up to 94%
Internal 0.4Ω High-Side DMOS FET
270μA Quiescent Current at No Load, 10μA
Shutdown Current
Internal Frequency Compensation
Fixed 125kHz Switching Frequency
Thermal Shutdown and Short-Circuit Current Limit
● 8-Pin SO and PDIP Packages
Ordering Information
PART
TEMP RANGE
PIN- OUTPUT
PACKAGE VOLTAGE (V)
MAX5033AUSA 0°C to +85°C 8 SO
MAX5033AUPA 0°C to +85°C 8 PDIP
3.3
MAX5033AASA -40°C to +125°C 8 SO
MAX5033BUSA 0°C to +85°C 8 SO
MAX5033BUPA 0°C to +85°C 8 PDIP
5.0
MAX5033BASA -40°C to +125°C 8 SO
MAX5033CUSA 0°C to +85°C 8 SO
MAX5033CUPA 0°C to +85°C 8 PDIP
12
MAX5033CASA -40°C to +125°C 8 SO
MAX5033DUSA 0°C to +85°C 8 SO
MAX5033DUPA 0°C to +85°C 8 PDIP
ADJ
MAX5033DASA -40°C to +125°C 8 SO
This product is available in both leaded(Pb) and lead(Pb)-free
packages. To order the lead(Pb)-free package, add a + after
the part number.
Pin Configuration
BST 1
VD 2
SGND 3
FB 4
MAX5033
SO/PDIP
8 LX
7 VIN
6 GND
5 ON/OFF
19-2979; Rev 5; 4/14

1 page




MAX5033 pdf
MAX5033
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
Typical Operating Characteristics
(CVirINcu=it,1i2f Va,pVpOlicNa/bOlFeF.) = 12V, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. See the Typical Operating
VOUT vs. TEMPERATURE
(MAX5033CASA, VOUT = 12V)
12.4
12.3
12.2
IOUT = 0.1A
12.1
12.0
IOUT = 0.5A
11.9
11.8
-50 -25
0 25 50 75 100 125 150
TEMPERATURE (C)
LINE REGULATION
(MAX5033BASA, VOUT = 5V)
5.10
IOUT = 0A
5.05
5.00
IOUT = 0.5A
4.95
4.90
6
16 26 36 46 56 66 76
INPUT VOLTAGE (V)
EFFICIENCY vs. LOAD CURRENT
(MAX5033BASA, VOUT = 5V)
100
90
80
70 VIN = 7.5V
60 VIN = 12V
50 VIN = 24V
40
VIN = 76V
VIN = 48V
30
20
10
0
0 100 200 300 400 500
LOAD CURRENT (mA)
VOUT vs. TEMPERATURE
(MAX5033BASA, VOUT = 5V)
5.10
IOUT = 0.1A
5.05
5.00
IOUT = 0.5A
4.95
4.90
-50 -25
0 25 50 75 100 125 150
TEMPERATURE (C)
LOAD REGULATION
(MAX5033CASA, VOUT = 12V)
12.4
12.3
12.2 VIN = 24V
12.1
12.0
VIN = 76V
11.9
11.8
0
100 200 300 400 500
ILOAD (mA)
EFFICIENCY vs. LOAD CURRENT
(MAX5033CASA, VOUT = 12V)
100
90
80
70 VIN = 15V
60
50 VIN = 76V
VIN = 24V
VIN = 48V
40
30
20
10
0
0 100 200 300 400 500
LOAD CURRENT (mA)
LINE REGULATION
(MAX5033CASA, VOUT = 12V)
12.4
12.3
12.2 IOUT = 0A
12.1
12.0 IOUT = 0.5A
11.9
11.8
10
5.10
20 30 40 50 60 70
INPUT VOLTAGE (V)
LOAD REGULATION
(MAX5033BASA, VOUT = 5V)
80
5.05 VIN = 7.5V, 24V
5.00
VIN = 76V
4.95
4.90
0
2.0
100 200 300 400
ILOAD (mA)
OUTPUT CURRENT LIMIT
vs. TEMPERATURE
500
1.7
1.4
1.1
0.8
0.5
-50 -25
MAX5033BASA
5% DROP IN VOUT
0 25 50 75 100 125 150
TEMPERATURE (°C)
www.maximintegrated.com
Maxim Integrated 5

5 Page





MAX5033 arduino
MAX5033
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
Ensure that the ripple specification of the input capacitor
exceeds the worst-case capacitor RMS ripple current.
Use the following equations to calculate the input capaci-
tor RMS current:
=ICRMS IPRMS 2 IAVGIN2
where :
( )IPRMS=
IPK 2
+ IDC 2 + (IPK × IDC)
×D
3
I AVGIN
=
VOUT × IOUT
VIN × η
IPK
=IOUT
+
IL
2
,
IDC
=IOUT
IL
2
and D = VOUT
VIN
IPRMS is the input switch RMS current, IAVGIN is the input
average current, and η is the converter efficiency.
The ESR of aluminum electrolytic capacitors increases
significantly at cold temperatures. Use a 1μF or greater
value ceramic capacitor in parallel with the aluminum
electrolytic input capacitor, especially for input voltages
below 8V.
Output Filter Capacitor
The worst-case peak-to-peak and RMS capacitor ripple
current, allowable peak-to-peak output ripple voltage, and
the maximum deviation of the output voltage during load
steps determine the capacitance and the ESR require-
ments for the output capacitors.
The output capacitance and its ESR form a zero, which
improves the closed-loop stability of the buck regulator.
Choose the output capacitor so the ESR zero frequency
(fZ) occurs between 20kHz to 40kHz. Use the following
equation to verify the value of fZ. Capacitors with 100mΩ
to 250mΩ ESR are recommended to ensure the closed-
loop stability while keeping the output ripple low.
fZ
=
2×
1
π × COUT
× ESR OUT
The output ripple is comprised of ΔVOQ (caused by the
capacitor discharge) and ΔVOESR (caused by the ESR
of the capacitor). Use low-ESR tantalum or aluminum
electrolytic capacitors at the output. Assuming that the
contributions from the ESR and capacitor discharge equal
80% and 20%, respectively, calculate the output capaci-
tance and the ESR required for a specified ripple using
the following equations:
ESR OUT
=
VOESR
IL
C OUT
2.2 ×
IL
VOQ
×
fSW
The MAX5033 has an internal soft-start time (tSS) of
400μs. It is important to keep the output rise time at
startup below tSS to avoid output overshoot. The output
rise time is directly proportional to the output capacitor.
Use 68μF or lower capacitance at the output to control the
overshoot below 5%.
In a dynamic load application, the allowable deviation of
the output voltage during the fast-transient load dictates
the output capacitance value and the ESR. The output
capacitors supply the step load current until the controller
responds with a greater duty cycle. The response time
(tRESPONSE) depends on the closedloop bandwidth of
the converter. The resistive drop across the capacitor
ESR and capacitor discharge cause a voltage droop dur-
ing a step load. Use a combination of low-ESR tantalum
and ceramic capacitors for better transient load and
ripple/noise performance. Keep the maximum output-
voltage deviation above the tolerable limits of the elec-
tronics being powered. Assuming a 50% contribution from
the output capacitance discharge and the ESR drop, use
the following equations to calculate the required ESR and
capacitance value:
ESR OUT
=
VOESR
ISTEP
C OUT
=
ISTEP
× t RESPONSE
VOQ
where ISTEP is the load step and tRESPONSE is the
response time of the controller. Controller response time
is approximately one-third of the reciprocal of the closed-
loop unity-gain bandwidth, 20kHz (typ).
PCB Layout Considerations
Proper PCB layout is essential. Minimize ground noise
by connecting the anode of the Schottky rectifier, the
input bypass-capacitor ground lead, and the output
filter-capacitor ground lead to a single point (star-ground
configuration). A ground plane is required. Minimize lead
lengths to reduce stray capacitance, trace resistance, and
radiated noise. In particular, place the Schottky rectifier
diode right next to the device. Also, place BST and VD
bypass capacitors very close to the device. Use the PCB
copper plane connecting to VIN and LX for heatsinking.
www.maximintegrated.com
Maxim Integrated 11

11 Page







PáginasTotal 17 Páginas
PDF Descargar[ Datasheet MAX5033.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
MAX5035V / Low-Power / Parallel-Input / Voltage-Output / 10-Bit DACMaxim Integrated
Maxim Integrated
MAX5033MAXPower Step-Down DC-DC ConverterMaxim Integrated
Maxim Integrated
MAX50351A / 76V / High-Efficiency MAXPower Step-Down DC-DC ConverterMaxim Integrated
Maxim Integrated
MAX5038Dual-Phase / Parallelable / Average Current-Mode ControllersMaxim Integrated
Maxim Integrated

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar