DataSheet.es    


PDF AT45DB081D Data sheet ( Hoja de datos )

Número de pieza AT45DB081D
Descripción 8-megabit 2.5V or 2.7V DataFlash
Fabricantes Adesto 
Logotipo Adesto Logotipo



Hay una vista previa y un enlace de descarga de AT45DB081D (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! AT45DB081D Hoja de datos, Descripción, Manual

Features
Single 2.5V or 2.7V to 3.6V Supply
RapidS Serial Interface: 66MHz Maximum Clock Frequency
– SPI Compatible Modes 0 and 3
User Configurable Page Size
– 256-Bytes per Page
– 264-Bytes per Page
– Page Size Can Be Factory Pre-configured for 256-Bytes
Page Program Operation
– Intelligent Programming Operation
– 4,096 Pages (256/264-Bytes/Page) Main Memory
Flexible Erase Options
– Page Erase (256-Bytes)
– Block Erase (2-Kbytes)
– Sector Erase (64-Kbytes)
– Chip Erase (8Mbits)
Two SRAM Data Buffers (256-/264-Bytes)
– Allows Receiving of Data while Reprogramming the Flash Array
Continuous Read Capability through Entire Array
– Ideal for Code Shadowing Applications
Low-power Dissipation
– 7mA Active Read Current Typical
– 25µA Standby Current Typical
– 15µA Deep Power Down Typical
Hardware and Software Data Protection Features
– Individual Sector
Sector Lockdown for Secure Code and Data Storage
– Individual Sector
Security: 128-byte Security Register
– 64-byte User Programmable Space
– Unique 64-byte Device Identifier
JEDEC Standard Manufacturer and Device ID Read
100,000 Program/Erase Cycles Per Page Minimum
Data Retention – 20 Years
Industrial Temperature Range
Green (Pb/Halide-free/RoHS Compliant) Packaging Options
8-megabit
2.5V or 2.7V
DataFlash
AT45DB081D
(Not Recommmended
for New Designs)
1. Description
The Adesto® AT45DB081D is a 2.5V or 2.7V, serial-interface Flash memory
ideally suited for a wide variety of digital voice-, image-, program code- and data-stor-
age applications. The AT45DB081D supports RapidSserial interface for
applications requiring very high speed operations. RapidS serial interface is SPI com-
patible for frequencies up to 66MHz. Its 8,650,752-bits of memory are organized as
4,096 pages of 256-bytes or 264-bytes each. In addition to the main memory, the
AT45DB081D also contains two SRAM buffers of 256-/264-bytes each. The buffers
allow the receiving of data while a page in the main Memory is being reprogrammed,
as well as writing a continuous data stream. EEPROM emulation (bit or byte alterabil-
ity) is easily handled with a self-contained three step read-modify-write operation.
Unlike conventional Flash memories that are accessed randomly with multiple
3596P–DFLASH–2/2014

1 page




AT45DB081D pdf
AT45DB081D
5. Device Operation
The device operation is controlled by instructions from the host processor. The list of instructions
and their associated opcodes are contained in Table 15-1 on page 27 through Table 15-7 on
page 30. A valid instruction starts with the falling edge of CS followed by the appropriate 8-bit
opcode and the desired buffer or main memory address location. While the CS pin is low, tog-
gling the SCK pin controls the loading of the opcode and the desired buffer or main memory
address location through the SI (serial input) pin. All instructions, addresses, and data are trans-
ferred with the most significant bit (MSB) first.
Buffer addressing for the DataFlash standard page size (264-bytes) is referenced in the data-
sheet using the terminology BFA8 - BFA0 to denote the nine address bits required to designate
a byte address within a buffer. Main memory addressing is referenced using the terminology
PA11 - PA0 and BA8 - BA0, where PA11 - PA0 denotes the 12 address bits required to desig-
nate a page address and BA8 - BA0 denotes the nine address bits required to designate a byte
address within the page.
For “Power of 2” binary page size (256-bytes) the Buffer addressing is referenced in the data-
sheet using the conventional terminology BFA7 - BFA0 to denote the eight address bits required
to designate a byte address within a buffer. Main memory addressing is referenced using the
terminology A19 - A0, where A19 - A8 denotes the 12 address bits required to designate a page
address and A7 - A0 denotes the eight address bits required to designate a byte address within
a page.
6. Read Commands
By specifying the appropriate opcode, data can be read from the main memory or from either
one of the two SRAM data buffers. The DataFlash supports RapidS protocols for Mode 0 and
Mode 3. Please refer to the “Detailed Bit-level Read Timing” diagrams in this datasheet for
details on the clock cycle sequences for each mode.
6.1 Continuous Array Read (Legacy Command: E8H): Up to 66MHz
By supplying an initial starting address for the main memory array, the Continuous Array Read
command can be utilized to sequentially read a continuous stream of data from the device by
simply providing a clock signal; no additional addressing information or control signals need to
be provided. The DataFlash incorporates an internal address counter that will automatically
increment on every clock cycle, allowing one continuous read operation without the need of
additional address sequences. To perform a continuous read from the DataFlash standard page
size (264-bytes), an opcode of E8H must be clocked into the device followed by three address
bytes (which comprise the 24-bit page and byte address sequence) and four don’t care bytes.
The first 12 bits (PA11 - PA0) of the 21-bit address sequence specify which page of the main
memory array to read, and the last nine bits (BA8 - BA0) of the 21-bit address sequence specify
the starting byte address within the page. To perform a continuous read from the binary page
size (256-bytes), the opcode (E8H) must be clocked into the device followed by three address
bytes and four don’t care bytes. The first 12 bits (A19 - A8) of the 20-bits sequence specify which
page of the main memory array to read, and the last eight bits (A7 - A0) of the 20-bits address
sequence specify the starting byte address within the page. The don’t care bytes that follow the
address bytes are needed to initialize the read operation. Following the don’t care bytes, addi-
tional clock pulses on the SCK pin will result in data being output on the SO (serial output) pin.
The CS pin must remain low during the loading of the opcode, the address bytes, the don’t care
bytes, and the reading of data. When the end of a page in main memory is reached during a
3596P–DFLASH–2/2014
5

5 Page





AT45DB081D arduino
AT45DB081D
The WP pin can be asserted while the device is erasing, but protection will not be activated until
the internal erase cycle completes.
Table 7-3. Chip Erase Command
Command
Chip Erase
Byte 1
C7H
Byte 2
94H
Byte 3
80H
Byte 4
9AH
Figure 7-1. Chip Erase
CS
SI
Opcode
Byte 1
Each transition
represents 8 bits
Opcode
Byte 2
Opcode
Byte 3
Opcode
Byte 4
Note: Refer to errata regarding Chip Erase on page 52.
7.8 Main Memory Page Program Through Buffer
This operation is a combination of the Buffer Write and Buffer to Main Memory Page Program
with Built-in Erase operations. Data is first clocked into buffer 1 or buffer 2 from the input pin (SI)
and then programmed into a specified page in the main memory. To perform a main memory
page program through buffer for the DataFlash standard page size (264-bytes), a 1-byte
opcode, 82H for buffer 1 or 85H for buffer 2, must first be clocked into the device, followed by
three address bytes. The address bytes are comprised of three don’t care bits, 12 page address
bits, (PA11 - PA0) that select the page in the main memory where data is to be written, and nine
buffer address bits (BFA8 - BFA0) that select the first byte in the buffer to be written. To perform
a main memory page program through buffer for the binary page size (256-bytes), the opcode
82H for buffer 1 or 85H for buffer 2, must be clocked into the device followed by three address
bytes consisting of four don’t care bits, 12 page address bits (A19 - A8) that specify the page in
the main memory to be written, and eight buffer address bits (BFA7 - BFA0) that selects the first
byte in the buffer to be written. After all address bytes are clocked in, the part will take data from
the input pins and store it in the specified data buffer. If the end of the buffer is reached, the
device will wrap around back to the beginning of the buffer. When there is a low-to-high transi-
tion on the CS pin, the part will first erase the selected page in main memory to all 1s and then
program the data stored in the buffer into that memory page. Both the erase and the program-
ming of the page are internally self-timed and should take place in a maximum time of tEP.
During this time, the status register will indicate that the part is busy.
8. Sector Protection
Two protection methods, hardware and software controlled, are provided for protection against
inadvertent or erroneous program and erase cycles. The software controlled method relies on
the use of software commands to enable and disable sector protection while the hardware con-
trolled method employs the use of the Write Protect (WP) pin. The selection of which sectors
that are to be protected or unprotected against program and erase operations is specified in the
nonvolatile Sector Protection Register. The status of whether or not sector protection has been
enabled or disabled by either the software or the hardware controlled methods can be deter-
mined by checking the Status Register.
3596P–DFLASH–2/2014
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet AT45DB081D.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AT45DB0818-Megabit 2.7-volt Only Serial DataFlashATMEL Corporation
ATMEL Corporation
AT45DB081-RC8-Megabit 2.7-volt Only Serial DataFlashATMEL Corporation
ATMEL Corporation
AT45DB081-RI8-Megabit 2.7-volt Only Serial DataFlashATMEL Corporation
ATMEL Corporation
AT45DB081-TC8-Megabit 2.7-volt Only Serial DataFlashATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar