DataSheet26.com

AT25SF081-SSHD-T PDF даташит

Спецификация AT25SF081-SSHD-T изготовлена ​​​​«Adesto» и имеет функцию, называемую «2.5V Minimum SPI Serial Flash Memory».

Детали детали

Номер произв AT25SF081-SSHD-T
Описание 2.5V Minimum SPI Serial Flash Memory
Производители Adesto
логотип Adesto логотип 

30 Pages
scroll

No Preview Available !

AT25SF081-SSHD-T Даташит, Описание, Даташиты
AT25SF081
8-Mbit, 2.5V Minimum
SPI Serial Flash Memory with Dual-I/O and Quad-IO Support
Features
PRELIMINARY DATASHEET
Single 2.5V - 3.6V Supply
Serial Peripheral Interface (SPI) Compatible
Supports SPI Modes 0 and 3
Supports Dual and Quad Output Read
104MHz Maximum Operating Frequency
Clock-to-Output (tV) of 6 ns
Flexible, Optimized Erase Architecture for Code + Data Storage Applications
Uniform 4-Kbyte Block Erase
Uniform 32-Kbyte Block Erase
Uniform 64-Kbyte Block Erase
Full Chip Erase
Hardware Controlled Locking of Protected Blocks via WP Pin
3 Protected Programmable Security Register Pages
Flexible Programming
Byte/Page Program (1 to 256 Bytes)
Fast Program and Erase Times
0.7ms Typical Page Program (256 Bytes) Time
70ms Typical 4-Kbyte Block Erase Time
300ms Typical 32-Kbyte Block Erase Time
600ms Typical 64-Kbyte Block Erase Time
JEDEC Standard Manufacturer and Device ID Read Methodology
Low Power Dissipation
2µA Deep Power-Down Current (Typical)
10µA Standby current (Typical)
4mA Active Read Current (Typical)
Endurance: 100,000 Program/Erase Cycles
Data Retention: 20 Years
Complies with Full Industrial Temperature Range
Industry Standard Green (Pb/Halide-free/RoHS Compliant) Package Options
8-lead SOIC (150-mil and 208-mil)
8-pad Ultra Thin DFN (5 x 6 x 0.6 mm and 2 x 3 x 0.6 mm) (1)
8-lead TSSOP (4 x 4 mm)(1)
1. TSSOP and DFN packages are not currently in production. Package outline dimensions are subject
to change.
DS-25SF081A–045B–5/2014









No Preview Available !

AT25SF081-SSHD-T Даташит, Описание, Даташиты
Description
The Adesto® AT25SF081 is a serial interface Flash memory device designed for use in a wide variety of high-volume
consumer based applications in which program code is shadowed from Flash memory into embedded or external RAM
for execution. The flexible erase architecture of the AT25SF081 is ideal for data storage as well, eliminating the need for
additional data storage devices.
The erase block sizes of the AT25SF081 have been optimized to meet the needs of today's code and data storage
applications. By optimizing the size of the erase blocks, the memory space can be used much more efficiently. Because
certain code modules and data storage segments must reside by themselves in their own erase regions, the wasted and
unused memory space that occurs with large block erase Flash memory devices can be greatly reduced. This increased
memory space efficiency allows additional code routines and data storage segments to be added while still maintaining
the same overall device density.
The device also contains three pages of Security Register that can be used for purposes such as unique device
serialization, system-level Electronic Serial Number (ESN) storage, locked key storage, etc. These Security Register
pages can be individually locked.
1. Pin Descriptions and Pinouts
Table 1-1. Pin Descriptions
Symbol
CS
SCK
SI (I/O0)
Name and Function
CHIP SELECT: Asserting the CS pin selects the device. When the CS pin is deasserted, the
device will be deselected and normally be placed in standby mode (not Deep Power-Down
mode), and the SO pin will be in a high-impedance state. When the device is deselected,
data will not be accepted on the SI pin.
A high-to-low transition on the CS pin is required to start an operation, and a low-to-high
transition is required to end an operation. When ending an internally self-timed operation
such as a program or erase cycle, the device will not enter the standby mode until the
completion of the operation.
SERIAL CLOCK: This pin is used to provide a clock to the device and is used to control the
flow of data to and from the device. Command, address, and input data present on the SI pin
is always latched in on the rising edge of SCK, while output data on the SO pin is always
clocked out on the falling edge of SCK.
SERIAL INPUT: The SI pin is used to shift data into the device. The SI pin is used for all data
input including command and address sequences. Data on the SI pin is always latched in on
the rising edge of SCK.
With the Dual-Output and Quad-Output Read commands, the SI Pin becomes an output pin
(I/O0) in conjunction with other pins to allow two or four bits of data on (I/O3-0) to be clocked
in on every falling edge of SCK
To maintain consistency with the SPI nomenclature, the SI (I/O0) pin will be referenced as
the SI pin unless specifically addressing the Dual-I/O and Quad-I/O modes in which case it
will be referenced as I/O0
Data present on the SI pin will be ignored whenever the device is deselected (CS is
deasserted).
Asserted
State
Type
Low Input
- Input
- Input/Output
AT25SF081
DS-25SF081A–045B–5/2014
2









No Preview Available !

AT25SF081-SSHD-T Даташит, Описание, Даташиты
Table 1-1. Pin Descriptions (Continued)
Symbol Name and Function
Asserted
State
Type
SO (I/O1)
SERIAL OUTPUT: The SO pin is used to shift data out from the device. Data on the SO pin
is always clocked out on the falling edge of SCK.
With the Dual-Output Read commands, the SO Pin remains an output pin (I/O0) in
conjunction with other pins to allow two bits of data on (I/O1-0) to be clocked in on every
falling edge of SCK
To maintain consistency with the SPI nomenclature, the SO (I/O1) pin will be referenced as
the SO pin unless specifically addressing the Dual-I/O modes in which case it will be
referenced as I/O1
The SO pin will be in a high-impedance state whenever the device is deselected (CS is
deasserted).
- Input/Output
WP
(I/O2)
HOLD
(I/O3)
WRITE PROTECT: The WP pin controls the hardware locking feature of the device. Please
refer to “Program/Erase Suspend (75h)” on page 17 for more details on protection features
and the WP pin.
With the Quad-Input Byte/Page Program command, the WP pin becomes an input pin (I/O2)
and, along with other pins, allows four bits (on I/O3-0) of data to be clocked in on every rising
edge of SCK. With the Quad-Output Read commands, the WP Pin becomes an output pin
(I/O2) in conjunction with other pins to allow four bits of data on (I/O33-0) to be clocked in on
every falling edge of SCK.
To maintain consistency with the SPI nomenclature, the WP (I/O2) pin will be referenced as
the WP pin unless specifically addressing the Quad-I/O modes in which case it will be
referenced as I/O2
The WP pin is internally pulled-high and may be left floating if hardware controlled protection
will not be used. However, it is recommended that the WP pin also be externally connected
to VCC whenever possible.
HOLD: The HOLD pin is used to temporarily pause serial communication without
deselecting or resetting the device. While the HOLD pin is asserted, transitions on the SCK
pin and data on the SI pin will be ignored, and the SO pin will be in a high-impedance state.
The CS pin must be asserted, and the SCK pin must be in the low state in order for a Hold
condition to start. A Hold condition pauses serial communication only and does not have an
effect on internally self-timed operations such as a program or erase cycle. Please refer to
“Hold Function” on page 31 for additional details on the Hold operation.
With the Quad-Input Byte/Page Program command, the HOLD pin becomes an input pin
(I/O3) and, along with other pins, allows four bits (on I/O3-0) of data to be clocked in on every
rising edge of SCK. With the Quad-Output Read commands, the HOLD Pin becomes an
output pin (I/O3) in conjunction with other pins to allow four bits of data on (I/O33-0) to be
clocked in on every falling edge of SCK.
To maintain consistency with the SPI nomenclature, the HOLD (I/O3) pin will be referenced
as the HOLD pin unless specifically addressing the Quad-I/O modes in which case it will be
referenced as I/O3
The HOLD pin is internally pulled-high and may be left floating if the Hold function will not be
used. However, it is recommended that the HOLD pin also be externally connected to VCC
whenever possible.
- Input/Output
- Input/Output
DEVICE POWER SUPPLY: The VCC pin is used to supply the source voltage to the device.
VCC Operations at invalid VCC voltages may produce spurious results and should not be
attempted.
-
Power
GND
GROUND: The ground reference for the power supply. GND should be connected to the
system ground.
- Power
AT25SF081
DS-25SF081A–045B–5/2014
3










Скачать PDF:

[ AT25SF081-SSHD-T.PDF Даташит ]

Номер в каталогеОписаниеПроизводители
AT25SF081-SSHD-B2.5V Minimum SPI Serial Flash MemoryAdesto
Adesto
AT25SF081-SSHD-T2.5V Minimum SPI Serial Flash MemoryAdesto
Adesto

Номер в каталоге Описание Производители
TL431

100 мА, регулируемый прецизионный шунтирующий регулятор

Unisonic Technologies
Unisonic Technologies
IRF840

8 А, 500 В, N-канальный МОП-транзистор

Vishay
Vishay
LM317

Линейный стабилизатор напряжения, 1,5 А

STMicroelectronics
STMicroelectronics

DataSheet26.com    |    2020    |

  Контакты    |    Поиск